品牌Conatex | 有效期至长期有效 | 最后更新2020-08-14 18:01 |
浏览次数0 |
CONATEX热电偶TM5S12PK1
张艳琴 QQ:2850590586 手机:13552865878 电话:010-64717020-115 传真:010-84786709-666 邮件:sales2@handelsen.cn |
的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。
辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。
至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。
温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。
一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。
使用温度传感器,您既可以进行高采样率的短期温度测量,也可以进行持续数小时,数天甚至数周的长期测量。测量值可以无线传输(蓝牙4.0)或存储在传感器中,直到将终端设备与“ SPARKvue”软件配对以调出数据为止。传感器的防护等级为IP67,即传感器是防尘的,甚至可以暂时浸入水中-是在户外进行温度测量的理想条件。传感器从纽扣电池汲取能量,纽扣电池在正常操作下的使用寿命超过一年。
技术指标:
测量范围-40°C至125°C,分辨率0.01°C,精度0.5°C,单位°C,K或°F。
最大采样率:10 Hz。
供货范围:
带不锈钢探头的传感器,内置纽扣电池CR2032(可交换),英语。操作手册。
Conatex TM12J05JA0
Conatex TM12J10JA0
Conatex TM12K05JA0
Conatex TM12K10JA0
Conatex TM12J05JJ0
Conatex TM12J10JJ0
Conatex TM12K05JJ0
Conatex TM12K10JJ0
Conatex TM12J05SA0
Conatex TM12J10SA0
Conatex TM12K05SA0
Conatex TM12K10SA0
Conatex TM12J05SS0
Conatex TM12J10SS0
Conatex TM12K05SS0
Conatex TM12K10SS0
Conatex TM12J05GS0
Conatex TM12J10GS0
Conatex TM12K05GS0
Conatex TM12K10GS0
Conatex TM12J02TA0
Conatex TM12J05TA0
Conatex TM12K02TA0
Conatex TM12K05TA0
Conatex TM12J02TG0
Conatex TM12J05TG0
Conatex TM12K02TG0
Conatex TM12K05TG0
Conatex TM12J02TT0
Conatex TM12J05TT0
Conatex TM12K02TT0
Conatex TM12K05TT0
Conatex TM12K08KB0
Conatex TM12K10KB0
Conatex TM12N08KB0
Conatex TM12N10KB0
Conatex TM12K08KK0
Conatex TM12K10KK0
Conatex TM12N08KK0
Conatex TM12N10KK0
Conatex TM12K08FB0
Conatex TM12K10FB0
Conatex TM12N08FB0
Conatex TM12N10FB0
Conatex TM12K08FF0
Conatex TM12K10FF0
Conatex TM12N08FF0
Conatex TM12N10FF0
Conatex TM12J05HB0
Conatex TM12J10HB0
Conatex TM12K05HB0
Conatex TM12K10HB0
Conatex TM12N05HB0
Conatex TM12N10HB0
Conatex TM12J05HH0
Conatex TM12J10HH0
Conatex TM12K05HH0
Conatex TM12K10HH0
Conatex TM12N05HH0
Conatex TM12N10HH0
Conatex TM12J02GA2
Conatex TM12J05GA2
Conatex TM12J10GA2
Conatex TM12K02GA2
Conatex TM12K05GA2
Conatex TM12K10GA2
Conatex TM12J02GG2
Conatex TM12J05GG2
Conatex TM12J10GG2
Conatex TM12K02GG2
Conatex TM12K05GG2
Conatex TM12K10GG2
Conatex TM12J02GG0
Conatex TM12J05GG0
Conatex TM12J10GG0
Conatex TM12K02GG0
Conatex TM12K05GG0
Conatex TM12K10GG0
的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。
辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。
至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。
CONATEX热电偶TM5S12PK1